API
ProbabilityBoundsAnalysis.pbox — Methodpbox( x :: Array{Interval{T}, 1} ) where T <: RealConstructs a pbox from an array of intervals with equal mass. Left and right bounds are sorted to construct cdf bounds.
ProbabilityBoundsAnalysis.pbox — Methodpbox( x :: Array{T, 2} ) where T <: RealConstructs a pbox from a matrix of 2nd order samples [Nouter x Ninner]
Distributions.cdf — MethodDistributions.cdf — Methodcdf(s :: pbox, x :: Interval)Returns interval bounds on cdf value in interval x
ProbabilityBoundsAnalysis.mass — Methodmass(s :: pbox, lo :: Real, hi :: Real)Returns bounds on probability mass in interval [lo, hi]
ProbabilityBoundsAnalysis.mass — Methodmass(s :: pbox, x:: Interval)Returns bounds on probability mass in interval x
ProbabilityBoundsAnalysis.makepbox — Methodmakepbox(x...)Returns an array of pboxes from an array of inputs (eg an array of intervals or reals).
Examples
julia> s = makepbox(interval(0,1))
Pbox: ~ ( range=[0.0,1.0], mean=[0.0,1.0], var=[0.0,0.25])
julia> ar = [interval(0, 1), interval(0, 2), 3];
julia> s = makepbox.(ar)
3-element Array{pbox,1}:
Pbox: ~ ( range=[0.0,1.0], mean=[0.0,1.0], var=[0.0,0.25])
Pbox: ~ ( range=[0.0,2.0], mean=[0.0,2.0], var=[0.0,1.0])
Pbox: ~ ( range=[-1.0,0.0], mean=[-1.0,0.0], var=[0.0,0.25])Statistics.mean — MethodStatistics.var — MethodStatistics.std — MethodProbabilityBoundsAnalysis.env — Methodenv(x :: pbox, y :: pbox, ...)Envelope. Returns the union of pboxes. Any number of pboxes may be input
Examples
julia> a = U(0,1)
julia> b = U(1,2)
julia> c = env(a, b)
Pbox: ~ uniform ( range=[0.0,2.0], mean=[0.5,1.5], var=0.08333333333333333)ProbabilityBoundsAnalysis.imp — Methodimp(x :: pbox, y :: pbox)Imprint. Returns the intersection of pboxes. Any number of pboxes may be input
Examples
julia> a = U(interval(0, 1), 2)
julia> b = U(1, 2)
julia> c = imp(a, b)
Pbox: ~ ( range=[1.0,2.0], mean=1.5, var=0.08333333333333333)ProbabilityBoundsAnalysis.normal — Methodnormal(mean :: Interval, std :: Interval)Normal shaped pbox. Parameters can be Real or Intervals.
Constructors
normalNgaussian
Examples
julia> a = normal(interval(0, 1), interval(1,2))
Pbox: ~ normal ( range=[-6.1805, 7.1805], mean=[0.0, 1.0], var=[1.0, 4.0])See also: uniform, lognormal, meanMinMax, plot
Missing docstring for uniform(min :: Interval, max :: Interval). Check Documenter's build log for details.
ProbabilityBoundsAnalysis.beta — Methodbeta(α :: Interval, β :: Interval)Beta shaped pbox. Parameters can be Real or Intervals.
Examples
julia> a = beta(2,interval(3,4))
Pbox: ~ beta ( range=[0.0, 1.0], mean=[0.33333, 0.4], var=[0.031746, 0.04])See also: KN, meanMinMax, plot
ProbabilityBoundsAnalysis.lognormal — Methodlognormal(μ :: Interval, std :: Interval)Lognormal shaped pbox. Parameters can be Real or Intervals.
See also: KN, meanMinMax
ProbabilityBoundsAnalysis.KN — MethodKN(k :: Interval, n :: Interval)k out of N confidence box (c-box), a pbox shaped confidence structure. Quantifies inferential uncertainty in binomial counts, where k successes were observed out of n trails. One sided or two sided confidence intervals may be drawn
Constructors
KNkn
See also: meanMinMax, plot
ProbabilityBoundsAnalysis.cut — Methodcut(x :: pbox, p :: Real)returns a vertical cut of a pbox at cdf value p, for p ∈ [0, 1]
Constructors
cut(x :: pbox, p :: Real)cut(x :: pbox, p :: Interval)
Index
ProbabilityBoundsAnalysis.pboxProbabilityBoundsAnalysis.pboxDistributions.cdfDistributions.cdfProbabilityBoundsAnalysis.KNProbabilityBoundsAnalysis.betaProbabilityBoundsAnalysis.cutProbabilityBoundsAnalysis.envProbabilityBoundsAnalysis.impProbabilityBoundsAnalysis.lognormalProbabilityBoundsAnalysis.makepboxProbabilityBoundsAnalysis.massProbabilityBoundsAnalysis.massProbabilityBoundsAnalysis.normalStatistics.meanStatistics.stdStatistics.var